Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.152
Filtrar
1.
Cell Rep ; 43(4): 114090, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38607915

RESUMO

Gene repression by the Polycomb pathway is essential for metazoan development. Polycomb domains, characterized by trimethylation of histone H3 lysine 27 (H3K27me3), carry the memory of repression and hence need to be maintained to counter the dilution of parental H3K27me3 with unmodified H3 during replication. Yet, how locus-specific H3K27me3 is maintained through replication is unclear. To understand H3K27me3 recovery post-replication, we first define nucleation sites within each Polycomb domain in mouse embryonic stem cells. To map dynamics of H3K27me3 domains across the cell cycle, we develop CUT&Flow (coupling cleavage under target and tagmentation with flow cytometry). We show that post-replication recovery of Polycomb domains occurs by nucleation and spreading, using the same nucleation sites used during de novo domain formation. By using Polycomb repressive complex 2 (PRC2) subunit-specific inhibitors, we find that PRC2 targets nucleation sites post-replication independent of pre-existing H3K27me3. Thus, competition between H3K27me3 deposition and nucleosome turnover drives both de novo domain formation and maintenance during every cell cycle.


Assuntos
Ciclo Celular , Histonas , Complexo Repressor Polycomb 2 , Animais , Camundongos , Histonas/metabolismo , Complexo Repressor Polycomb 2/metabolismo , Metilação , Células-Tronco Embrionárias Murinas/metabolismo , Células-Tronco Embrionárias Murinas/citologia , Proteínas do Grupo Polycomb/metabolismo , Proteínas do Grupo Polycomb/genética , Domínios Proteicos , Nucleossomos/metabolismo
2.
Elife ; 132024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38656237

RESUMO

The organization of nucleosomes into chromatin and their accessibility are shaped by local DNA mechanics. Conversely, nucleosome positions shape genetic variations, which may originate from mismatches during replication and chemical modification of DNA. To investigate how DNA mismatches affect the mechanical stability and the exposure of nucleosomal DNA, we used an optical trap combined with single-molecule FRET and a single-molecule FRET cyclization assay. We found that a single base-pair C-C mismatch enhances DNA bendability and nucleosome mechanical stability for the 601-nucleosome positioning sequence. An increase in force required for DNA unwrapping from the histone core is observed for single base-pair C-C mismatches placed at three tested positions: at the inner turn, at the outer turn, or at the junction of the inner and outer turn of the nucleosome. The results support a model where nucleosomal DNA accessibility is reduced by mismatches, potentially explaining the preferred accumulation of single-nucleotide substitutions in the nucleosome core and serving as the source of genetic variation during evolution and cancer progression. Mechanical stability of an intact nucleosome, that is mismatch-free, is also dependent on the species as we find that yeast nucleosomes are mechanically less stable and more symmetrical in the outer turn unwrapping compared to Xenopus nucleosomes.


Assuntos
Pareamento Incorreto de Bases , DNA , Nucleossomos , Nucleossomos/metabolismo , Nucleossomos/química , Nucleossomos/genética , DNA/química , DNA/metabolismo , DNA/genética , Pareamento Incorreto de Bases/genética , Animais , Transferência Ressonante de Energia de Fluorescência , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Xenopus laevis
3.
Sci Rep ; 14(1): 9396, 2024 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658615

RESUMO

In a previous report, we demonstrated that Cbx1, PurB and Sp3 inhibited cardiac muscle differentiation by increasing nucleosome density around cardiac muscle gene promoters. Since cardiac and skeletal muscle express many of the same proteins, we asked if Cbx1, PurB and Sp3 similarly regulated skeletal muscle differentiation. In a C2C12 model of skeletal muscle differentiation, Cbx1 and PurB knockdown increased myotube formation. In contrast, Sp3 knockdown inhibited myotube formation, suggesting that Sp3 played opposing roles in cardiac muscle and skeletal muscle differentiation. Consistent with this finding, Sp3 knockdown also inhibited various muscle-specific genes. The Cbx1, PurB and Sp3 proteins are believed to influence gene-expression in part by altering nucleosome position. Importantly, we developed a statistical approach to determine if changes in nucleosome positioning were significant and applied it to understanding the architecture of muscle-specific genes. Through this novel statistical approach, we found that during myogenic differentiation, skeletal muscle-specific genes undergo a set of unique nucleosome changes which differ significantly from those shown in commonly expressed muscle genes. While Sp3 binding was associated with nucleosome loss, there appeared no correlation with the aforementioned nucleosome changes. In summary, we have identified a novel role for Sp3 in skeletal muscle differentiation and through the application of quantifiable MNase-seq have discovered unique fingerprints of nucleosome changes for various classes of muscle genes during myogenic differentiation.


Assuntos
Diferenciação Celular , Desenvolvimento Muscular , Músculo Esquelético , Nucleossomos , Regiões Promotoras Genéticas , Nucleossomos/metabolismo , Nucleossomos/genética , Animais , Diferenciação Celular/genética , Camundongos , Músculo Esquelético/metabolismo , Desenvolvimento Muscular/genética , Linhagem Celular , Fator de Transcrição Sp3/metabolismo , Fator de Transcrição Sp3/genética , Fibras Musculares Esqueléticas/metabolismo
4.
Yi Chuan ; 46(4): 279-289, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38632091

RESUMO

H2A.Z, one of the most well-known variants of histone H2A, has been extensively investigated on its dual roles in gene transcription in recent years. In this review, we focus on the intricate involvement of H2A.Z in transcriptional regulation, including the assembly of distinct H2A.Z subtypes, post-translational modifications and genomic distributions. Emphasis is placed on the biological and pathophysiological implications, particularly in tumorigenesis and nervous system development. We summarize the dynamic regulatory mechanisms governing H2A.Z deposition or eviction on chromatin to provide insights for understanding the diversity of histone variants and promoting the search of new targets in concerned disease diagnosis and treatment.


Assuntos
Histonas , Nucleossomos , Histonas/metabolismo , Cromatina , Regulação da Expressão Gênica , Genoma
5.
J Med Virol ; 96(4): e29510, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38573018

RESUMO

Hepatitis B virus (HBV) infection poses a significant burden on global public health. Unfortunately, current treatments cannot fully alleviate this burden as they have limited effect on the transcriptional activity of the tenacious covalently closed circular DNA (cccDNA) responsible for viral persistence. Consequently, the HBV life cycle should be further investigated to develop new anti-HBV pharmaceutical targets. Our previous study discovered that the host gene TMEM203 hinders HBV replication by participating in calcium ion regulation. The involvement of intracellular calcium in HBV replication has also been confirmed. In this study, we found that transient receptor potential vanilloid 4 (TRPV4) notably enhances HBV reproduction by investigating the effects of several calcium ion-related molecules on HBV replication. The in-depth study showed that TRPV4 promotes hepatitis B core/capsid protein (HBc) protein stability through the ubiquitination pathway and then promotes the nucleocapsid assembly. HBc binds to cccDNA and reduces the nucleosome spacing of the cccDNA-histones complex, which may regulate HBV transcription by altering the nucleosome arrangement of the HBV genome. Moreover, our results showed that TRPV4 promotes cccDNA-dependent transcription by accelerating the methylation modification of H3K4. In conclusion, TRPV4 could interact with HBV core protein and regulate HBV during transcription and replication. These data suggest that TRPV4 exerts multifaceted HBV-related synergistic factors and may serve as a therapeutic target for CHB.


Assuntos
Antineoplásicos , Hepatite B , Humanos , Ubiquitina , Capsídeo , Proteínas do Capsídeo , Vírus da Hepatite B/genética , Canais de Cátion TRPV/genética , Cálcio , Nucleossomos , Metilação , Proteínas de Membrana
6.
Clin Epigenetics ; 16(1): 50, 2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561804

RESUMO

BACKGROUND: Nucleosome repositioning in cancer is believed to cause many changes in genome organisation and gene expression. Understanding these changes is important to elucidate fundamental aspects of cancer. It is also important for medical diagnostics based on cell-free DNA (cfDNA), which originates from genomic DNA regions protected from digestion by nucleosomes. RESULTS: We have generated high-resolution nucleosome maps in paired tumour and normal tissues from the same breast cancer patients using MNase-assisted histone H3 ChIP-seq and compared them with the corresponding cfDNA from blood plasma. This analysis has detected single-nucleosome repositioning at key regulatory regions in a patient-specific manner and common cancer-specific patterns across patients. The nucleosomes gained in tumour versus normal tissue were particularly informative of cancer pathways, with ~ 20-fold enrichment at CpG islands, a large fraction of which marked promoters of genes encoding DNA-binding proteins. The tumour tissues were characterised by a 5-10 bp decrease in the average distance between nucleosomes (nucleosome repeat length, NRL), which is qualitatively similar to the differences between pluripotent and differentiated cells. This effect was correlated with gene activity, differential DNA methylation and changes in local occupancy of linker histone variants H1.4 and H1X. CONCLUSIONS: Our study offers a novel resource of high-resolution nucleosome maps in breast cancer patients and reports for the first time the effect of systematic decrease of NRL in paired tumour versus normal breast tissues from the same patient. Our findings provide a new mechanistic understanding of nucleosome repositioning in tumour tissues that can be valuable for patient diagnostics, stratification and monitoring.


Assuntos
Neoplasias da Mama , Ácidos Nucleicos Livres , Humanos , Feminino , Nucleossomos/genética , Neoplasias da Mama/genética , Metilação de DNA , Histonas/genética , Histonas/metabolismo , DNA/metabolismo , Ácidos Nucleicos Livres/metabolismo , Cromatina
7.
8.
Epigenetics ; 19(1): 2337085, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38595049

RESUMO

The PhiC31 integration system allows for targeted and efficient transgene integration and expression by recognizing pseudo attP sites in mammalian cells and integrating the exogenous genes into the open chromatin regions of active chromatin. In order to investigate the regulatory patterns of efficient gene expression in the open chromatin region of PhiC31 integration, this study utilized Ubiquitous Chromatin Opening Element (UCOE) and activating RNA (saRNA) to modulate the chromatin structure in the promoter region of the PhiC31 integration vector. The study analysed the effects of DNA methylation and nucleosome occupancy changes in the integrated promoter on gene expression levels. The results showed that for the OCT4 promoter with moderate CG density, DNA methylation had a smaller impact on expression compared to changes in nucleosome positioning near the transcription start site, which was crucial for enhancing downstream gene expression. On the other hand, for the SOX2 promoter with high CG density, increased methylation in the CpG island upstream of the transcription start site played a key role in affecting high expression, but the positioning and clustering of nucleosomes also had an important influence. In conclusion, analysing the DNA methylation patterns, nucleosome positioning, and quantity distribution of different promoters can determine whether the PhiC31 integration site possesses the potential to further enhance expression or overcome transgene silencing effects by utilizing chromatin regulatory elements.


Assuntos
Cromatina , Nucleossomos , Animais , Cromatina/genética , Nucleossomos/genética , Metilação de DNA , Ilhas de CpG , Regiões Promotoras Genéticas , Mamíferos/genética
9.
Methods Mol Biol ; 2795: 169-182, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38594538

RESUMO

DNA methylation and posttranslational modifications of histones instruct gene expression in eukaryotes. Besides canonical histones, histone variants also play a critical role in transcriptional regulation. One of the best studied histone variants in plants is H2A.Z whose removal from gene bodies correlates with increased transcriptional activity. The eviction of H2A.Z is regulated by environmental cues such as increased ambient temperatures, and current models suggest that H2A.Z functions as a transcriptional buffer preventing environmentally responsive genes from undesired activation. To monitor temperature-dependent H2A.Z dynamics, chromatin immunoprecipitation (ChIP) of H2A.Z-occupied DNA can be performed. The following protocol describes a quick and easy ChIP approach to study in vivo H2A.Z occupancy.


Assuntos
Regulação da Expressão Gênica , Histonas , Histonas/genética , Histonas/metabolismo , Imunoprecipitação da Cromatina , Metilação de DNA , Temperatura , Cromatina/genética , Nucleossomos
10.
Sci Adv ; 10(15): eadk7678, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38598631

RESUMO

The Rpd3S complex plays a pivotal role in facilitating local histone deacetylation in the transcribed regions to suppress intragenic transcription initiation. Here, we present the cryo-electron microscopy structures of the budding yeast Rpd3S complex in both its apo and three nucleosome-bound states at atomic resolutions, revealing the exquisite architecture of Rpd3S to well accommodate a mononucleosome without linker DNA. The Rpd3S core, containing a Sin3 Lobe and two NB modules, is a rigid complex and provides three positive-charged anchors (Sin3_HCR and two Rco1_NIDs) to connect nucleosomal DNA. In three nucleosome-bound states, the Rpd3S core exhibits three distinct orientations relative to the nucleosome, assisting the sector-shaped deacetylase Rpd3 to locate above the SHL5-6, SHL0-1, or SHL2-3, respectively. Our work provides a structural framework that reveals a dynamic working model for the Rpd3S complex to engage diverse deacetylation sites.


Assuntos
Nucleossomos , Proteínas de Saccharomyces cerevisiae , Histonas/metabolismo , Microscopia Crioeletrônica , Metilação , Histona Desacetilases/metabolismo , DNA/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
11.
Commun Biol ; 7(1): 251, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429335

RESUMO

Tau is a microtubule-associated protein often found in neurofibrillary tangles (NFTs) in the brains of patients with Alzheimer's disease. Beyond this context, mounting evidence suggests that tau localizes into the nucleus, where it may play a role in DNA protection and heterochromatin regulation. The molecular mechanisms behind these observations are currently unclear. Using in vitro biophysical experiments, here we demonstrate that tau can undergo liquid-liquid phase separation (LLPS) with DNA, mononucleosomes, and reconstituted nucleosome arrays under low salt conditions. Low concentrations of tau promote chromatin compaction and protect DNA from digestion. While the material state of samples at physiological salt is dominated by chromatin oligomerization, tau can still associate strongly and reversibly with nucleosome arrays. These properties are driven by tau's strong interactions with linker and nucleosomal DNA. In addition, tau co-localizes into droplets formed by nucleosome arrays and phosphorylated HP1α, a key heterochromatin constituent thought to function through an LLPS mechanism. Importantly, LLPS and chromatin interactions are disrupted by aberrant tau hyperphosphorylation. These biophysical properties suggest that tau may directly impact DNA and chromatin accessibility and that loss of these interactions could contribute to the aberrant nuclear effects seen in tau pathology.


Assuntos
Cromatina , Proteínas tau , Humanos , Cromatina/química , Cromatina/metabolismo , DNA/metabolismo , Heterocromatina , Nucleossomos , 60422 , Fosforilação , Proteínas tau/química , Proteínas tau/metabolismo
12.
Cell Rep ; 43(4): 113983, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38517895

RESUMO

Transcriptional silencing in Saccharomyces cerevisiae involves the generation of a chromatin state that stably represses transcription. Using multiple reporter assays, a diverse set of upstream activating sequence enhancers and core promoters were investigated for their susceptibility to silencing. We show that heterochromatin stably silences only weak and stress-induced regulatory elements but is unable to stably repress housekeeping gene regulatory elements, and the partial repression of these elements did not result in bistable expression states. Permutation analysis of enhancers and promoters indicates that both elements are targets of repression. Chromatin remodelers help specific regulatory elements to resist repression, most probably by altering nucleosome mobility and changing transcription burst duration. The strong enhancers/promoters can be repressed if silencer-bound Sir1 is increased. Together, our data suggest that the heterochromatic locus has been optimized to stably silence the weak mating-type gene regulatory elements but not strong housekeeping gene regulatory sequences.


Assuntos
Regulação Fúngica da Expressão Gênica , Inativação Gênica , Heterocromatina , Regiões Promotoras Genéticas , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Heterocromatina/metabolismo , Heterocromatina/genética , Regiões Promotoras Genéticas/genética , Elementos Facilitadores Genéticos/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Sequências Reguladoras de Ácido Nucleico/genética , Nucleossomos/metabolismo , Nucleossomos/genética
13.
Epigenetics Chromatin ; 17(1): 8, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528624

RESUMO

Chromatin state is thought to impart regulatory function to the underlying DNA sequence. This can be established through histone modifications and chromatin organisation, but exactly how these factors relate to one another to regulate gene expression is unclear. In this study, we have used super-resolution microscopy to image the Y loops of Drosophila melanogaster primary spermatocytes, which are enormous transcriptionally active chromatin fibres, each representing single transcription units that are individually resolvable in the nuclear interior. We previously found that the Y loops consist of regular clusters of nucleosomes, with an estimated median of 54 nucleosomes per cluster with wide variation.In this study, we report that the histone modifications H3K4me3, H3K27me3, and H3K36me3 are also clustered along the Y loops, with H3K4me3 more associated with diffuse chromatin compared to H3K27me3. These histone modifications form domains that can be stretches of Y loop chromatin micrometres long, or can be in short alternating domains. The different histone modifications are associated with different sizes of chromatin clusters and unique morphologies. Strikingly, a single chromatin cluster almost always only contains only one type of the histone modifications that were labelled, suggesting exclusivity, and therefore regulation at the level of individual chromatin clusters. The active mark H3K36me3 is more associated with actively elongating RNA polymerase II than H3K27me3, with polymerase often appearing on what are assumed to be looping regions on the periphery of chromatin clusters.These results provide a foundation for understanding the relationship between chromatin state, chromatin organisation, and transcription regulation - with potential implications for pause-release dynamics, splicing complex organisation and chromatin dynamics during polymerase progression along a gene.


Assuntos
Histonas , Nucleossomos , Animais , Histonas/metabolismo , Código das Histonas , Drosophila melanogaster/genética , Cromatina/genética
14.
Sci Rep ; 14(1): 5438, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443490

RESUMO

The establishment and maintenance of heterochromatin, a specific chromatin structure essential for genomic stability and regulation, rely on intricate interactions between chromatin-modifying enzymes and nucleosomal histone proteins. However, the precise trigger for these modifications remains unclear, thus highlighting the need for a deeper understanding of how methyltransferases facilitate histone methylation among others. Here, we investigate the molecular mechanisms underlying heterochromatin assembly by studying the interaction between the H3K9 methyltransferase Clr4 and H3K9-methylated nucleosomes. Using a combination of liquid-state nuclear magnetic resonance spectroscopy and cryo-electron microscopy, we elucidate the structural basis of Clr4 binding to H3K9-methylated nucleosomes. Our results reveal that Clr4 engages with nucleosomes through its chromodomain and disordered regions to promote de novo methylation. This study provides crucial insights into the molecular mechanisms governing heterochromatin formation by highlighting the significance of chromatin-modifying enzymes in genome regulation and disease pathology.


Assuntos
Metiltransferases , Nucleossomos , Histonas , Microscopia Crioeletrônica , Heterocromatina , Cromatina
15.
Nucleic Acids Res ; 52(7): 3510-3521, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38452220

RESUMO

N6-Methyladenosine (m6A) is the most abundant chemical modification occurring on eukaryotic mRNAs, and has been reported to be involved in almost all stages of mRNA metabolism. The distribution of m6A sites is notably asymmetric along mRNAs, with a strong preference toward the 3' terminus of the transcript. How m6A regional preference is shaped remains incompletely understood. In this study, by performing m6A-seq on chromatin-associated RNAs, we found that m6A regional preference arises during transcription. Nucleosome occupancy is remarkedly increased in the region downstream of m6A sites, suggesting an intricate interplay between m6A methylation and nucleosome-mediated transcriptional dynamics. Notably, we found a remarkable slowdown of Pol-II movement around m6A sites. In addition, inhibiting Pol-II movement increases nearby m6A methylation levels. By analyzing massively parallel assays for m6A, we found that RNA secondary structures inhibit m6A methylation. Remarkably, the m6A sites associated with Pol-II pausing tend to be embedded within RNA secondary structures. These results suggest that Pol-II pausing could affect the accessibility of m6A motifs to the methyltransferase complex and subsequent m6A methylation by mediating RNA secondary structure. Overall, our study reveals a crucial role of transcriptional dynamics in the formation of m6A regional preference.


Assuntos
Adenosina , Adenosina/análogos & derivados , RNA Polimerase II , RNA Mensageiro , Transcrição Gênica , Adenosina/metabolismo , Metilação , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , RNA Polimerase II/metabolismo , Humanos , Conformação de Ácido Nucleico , Nucleossomos/metabolismo , Nucleossomos/genética , Metiltransferases/metabolismo , Metiltransferases/genética , Cromatina/metabolismo , Cromatina/genética , Cromatina/química
16.
Genes Genet Syst ; 992024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38447993

RESUMO

The budding yeast Saccharomyces cerevisiae is an excellent model organism for studying chromatin regulation with high-resolution genome-wide analyses. Since newly generated genome-wide data are often compared with publicly available datasets, expanding our dataset repertoire will be beneficial for the field. Information on transcription start sites (TSSs) determined at base pair resolution is essential for elucidating mechanisms of transcription and related chromatin regulation, yet no datasets that cover two different cell types are available. Here, we present a CAGE (cap analysis of gene expression) dataset for a-cells and α-cells grown in defined and rich media. Cell type-specific genes were differentially expressed as expected, ensuring the reliability of the data. Some of the differentially expressed TSSs were medium-specific or detected due to unrecognized chromosome rearrangement. By comparing the CAGE data with a high-resolution nucleosome map, major TSSs were primarily found in +1 nucleosomes, with a peak approximately 30 bp from the promoter-proximal end of the nucleosome. The dataset is available at DDBJ/GEA.


Assuntos
Estudo de Associação Genômica Ampla , Nucleossomos , Reprodutibilidade dos Testes , Cromatina/metabolismo , Saccharomyces cerevisiae/genética
17.
Nature ; 627(8005): 890-897, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38448592

RESUMO

In eukaryotes, DNA compacts into chromatin through nucleosomes1,2. Replication of the eukaryotic genome must be coupled to the transmission of the epigenome encoded in the chromatin3,4. Here we report cryo-electron microscopy structures of yeast (Saccharomyces cerevisiae) replisomes associated with the FACT (facilitates chromatin transactions) complex (comprising Spt16 and Pob3) and an evicted histone hexamer. In these structures, FACT is positioned at the front end of the replisome by engaging with the parental DNA duplex to capture the histones through the middle domain and the acidic carboxyl-terminal domain of Spt16. The H2A-H2B dimer chaperoned by the carboxyl-terminal domain of Spt16 is stably tethered to the H3-H4 tetramer, while the vacant H2A-H2B site is occupied by the histone-binding domain of Mcm2. The Mcm2 histone-binding domain wraps around the DNA-binding surface of one H3-H4 dimer and extends across the tetramerization interface of the H3-H4 tetramer to the binding site of Spt16 middle domain before becoming disordered. This arrangement leaves the remaining DNA-binding surface of the other H3-H4 dimer exposed to additional interactions for further processing. The Mcm2 histone-binding domain and its downstream linker region are nested on top of Tof1, relocating the parental histones to the replisome front for transfer to the newly synthesized lagging-strand DNA. Our findings offer crucial structural insights into the mechanism of replication-coupled histone recycling for maintaining epigenetic inheritance.


Assuntos
Cromatina , Replicação do DNA , Epistasia Genética , Histonas , Saccharomyces cerevisiae , Sítios de Ligação , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , Cromatina/ultraestrutura , Microscopia Crioeletrônica , Replicação do DNA/genética , DNA Fúngico/biossíntese , DNA Fúngico/química , DNA Fúngico/metabolismo , DNA Fúngico/ultraestrutura , Epistasia Genética/genética , Histonas/química , Histonas/metabolismo , Histonas/ultraestrutura , Complexos Multienzimáticos/química , Complexos Multienzimáticos/metabolismo , Complexos Multienzimáticos/ultraestrutura , Nucleossomos/química , Nucleossomos/metabolismo , Nucleossomos/ultraestrutura , Ligação Proteica , Domínios Proteicos , Multimerização Proteica , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestrutura
18.
J Phys Chem B ; 128(13): 3090-3101, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38530903

RESUMO

The basic packaging unit of eukaryotic chromatin is the nucleosome that contains 145-147 base pair duplex DNA wrapped around an octameric histone protein. While the DNA sequence plays a crucial role in controlling the positioning of the nucleosome, the molecular details behind the interplay between DNA sequence and nucleosome dynamics remain relatively unexplored. This study analyzes this interplay in detail by performing all-atom molecular dynamics simulations of nucleosomes, comparing the human α-satellite palindromic (ASP) and the strong positioning "Widom-601" DNA sequence at time scales of 12 µs. The simulations are performed at salt concentrations 10-20 times higher than physiological salt concentrations to screen the electrostatic interactions and promote unwrapping. These microsecond-long simulations give insight into the molecular-level sequence-dependent events that dictate the pathway of DNA unwrapping. We find that the "ASP" sequence forms a loop around SHL ± 5 for three sets of simulations. Coincident with loop formation is a cooperative increase in contacts with the neighboring N-terminal H2B tail and C-terminal H2A tail and the release of neighboring counterions. We find that the Widom-601 sequence exhibits a strong breathing motion of the nucleic acid ends. Coincident with the breathing motion is the collapse of the full N-terminal H3 tail and formation of an α-helix that interacts with the H3 histone core. We postulate that the dynamics of these histone tails and their modification with post-translational modifications (PTMs) may play a key role in governing this dynamics.


Assuntos
Histonas , Nucleossomos , Humanos , Histonas/química , Cromatina , DNA/química , Simulação de Dinâmica Molecular
19.
Nature ; 628(8006): 212-220, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38509361

RESUMO

RAD51 is the central eukaryotic recombinase required for meiotic recombination and mitotic repair of double-strand DNA breaks (DSBs)1,2. However, the mechanism by which RAD51 functions at DSB sites in chromatin has remained elusive. Here we report the cryo-electron microscopy structures of human RAD51-nucleosome complexes, in which RAD51 forms ring and filament conformations. In the ring forms, the N-terminal lobe domains (NLDs) of RAD51 protomers are aligned on the outside of the RAD51 ring, and directly bind to the nucleosomal DNA. The nucleosomal linker DNA that contains the DSB site is recognized by the L1 and L2 loops-active centres that face the central hole of the RAD51 ring. In the filament form, the nucleosomal DNA is peeled by the RAD51 filament extension, and the NLDs of RAD51 protomers proximal to the nucleosome bind to the remaining nucleosomal DNA and histones. Mutations that affect nucleosome-binding residues of the RAD51 NLD decrease nucleosome binding, but barely affect DNA binding in vitro. Consistently, yeast Rad51 mutants with the corresponding mutations are substantially defective in DNA repair in vivo. These results reveal an unexpected function of the RAD51 NLD, and explain the mechanism by which RAD51 associates with nucleosomes, recognizes DSBs and forms the active filament in chromatin.


Assuntos
Microscopia Crioeletrônica , Quebras de DNA de Cadeia Dupla , Nucleossomos , Rad51 Recombinase , Proteínas de Saccharomyces cerevisiae , Humanos , DNA/química , DNA/metabolismo , DNA/ultraestrutura , Reparo do DNA/genética , Nucleossomos/química , Nucleossomos/metabolismo , Nucleossomos/ultraestrutura , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Rad51 Recombinase/química , Rad51 Recombinase/metabolismo , Rad51 Recombinase/ultraestrutura , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Mutação , Domínios Proteicos , Histonas/química , Histonas/metabolismo , Histonas/ultraestrutura , Ligação Proteica
20.
Immunity ; 57(3): 462-477.e9, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38430908

RESUMO

Inducible nucleosome remodeling at hundreds of latent enhancers and several promoters shapes the transcriptional response to Toll-like receptor 4 (TLR4) signaling in macrophages. We aimed to define the identities of the transcription factors that promote TLR-induced remodeling. An analysis strategy based on ATAC-seq and single-cell ATAC-seq that enriched for genomic regions most likely to undergo remodeling revealed that the transcription factor nuclear factor κB (NF-κB) bound to all high-confidence peaks marking remodeling during the primary response to the TLR4 ligand, lipid A. Deletion of NF-κB subunits RelA and c-Rel resulted in the loss of remodeling at high-confidence ATAC-seq peaks, and CRISPR-Cas9 mutagenesis of NF-κB-binding motifs impaired remodeling. Remodeling selectivity at defined regions was conferred by collaboration with other inducible factors, including IRF3- and MAP-kinase-induced factors. Thus, NF-κB is unique among TLR4-activated transcription factors in its broad contribution to inducible nucleosome remodeling, alongside its ability to activate poised enhancers and promoters assembled into open chromatin.


Assuntos
NF-kappa B , Receptor 4 Toll-Like , NF-kappa B/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Nucleossomos , Transdução de Sinais , Regulação da Expressão Gênica , Fator de Transcrição RelA/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...